Case study – Racing motor

- Optimization of high-performance motor of German racing motor start-up with Metal Injection Molding (short: MIM) magnets
 - Stator concept: No changes
 - Power electronics: No changes
 - Rotor concept: Freeform modulation of NdFeB permanent magnets with MIM technology
- Goal: higher performance and reduced heavy rare earth in magnets for less criticality in supply chain

A MIM plus in cooperation with **SciMo** – **Elektrische Hochleistungsantriebe GmbH**

31.01.2024

1

Case study – Racing motor – Motor A

2

Case study – Racing motor – Motor B

A MIM plus in cooperation with **SciMo** – **Elektrische Hochleistungsantriebe GmbH**

2

 $\times 10^4$

Case study – Racing motor

Conclusion:

The use of metal injection molding has the following advantages:

- 1. Higher performance of electric motors
- 2. Use of heavy rare earths can be reduced
- 3. Considerable cost advantages compared to press-sintered magnets, as magnets can be manufactured without postprocessing operations:
 - a) Eroding is not necessary
 - b) Grinding to produce free-form surfaces is not required
 - c) By eliminating the eroding and grinding operations, the degree of material utilization is significantly higher with metal injection molding
 - d) lower manufacturing costs by reducing the use of heavy rare earths
- 4. Significantly improved ecological footprint by using recycled magnets or through the reduction of heavy rare earths

 Δ